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1,3-CYCLOADDITIONS OF A THIONITROSO S~SULFIDE !

*
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Summary The thionitroso S-sulfide 5 adds to (F)-cyclooctene, (£,Z)-1,5-cyclo-

octadiene, and norbornene to give 1,2,3-dithiazolidines, whereas en-
amines undergo electrophilic substitution.

.3

In contrast to thiocarbonyl S-sulfides 1,2 the ¥ analogues 2 are iso-

lable. X-Ray analyses of crystalline "thiosulfinylamines” 4-6 4-6 revealed doub-
le bond character of the N=S and §=S bond. The resonance structures 2b and 2c
are probably meaningful; 2 undergoes 1,3-dipolar cycloadditions and shares the
preference for cis configuration with substituted allyl anions. In the nomen-

clature of 1,3—dipoles,7 compounds 2 are thionitroso S-sulfides.
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Barton and Robson 8 described 1,3-cycloadditions of the purple 3 to norbor-
nadiene and cyclopentadiene. Inagaki, Okazaki, and Inamoto 2 prepared 5 (dark
ruby-red crystals) from the arylamine and Szclz; the careful study of the che-
10

mistry of 5 did not include cycloadditions.

The deep color of the CHCl3
tene faded in 4 h at 20?C; the 1:1 adduct 7 (mp 114-115°C, 50%)
in yellow needles. Similarly, trans,ctis-1,5-cyclooctadiene afforded 83% of 8,

solution of 5 and 1.1 equiv of ¢rans-cyclooc~

1 crystallized

mp 126-127°C. The M+ ions are the strongest peaks in the MS of 7 and 8; m/e 249

and 230 occur in both spectra and are ascribed to 9 and 10.

Reduction of 7 by LiAlH4 in THF resulted in removal of one sulfur; in situ
reaction with acetyl chloride furnished 38% of 11. IR bands (CHC13) at 3440
(N-H) and 1675 cm_1 (C=0) as well as 5C = 196.2 for CH3—gO—S (194.1 for S-bu-
tyl thiocacetate, &, of CH,-CO-N lower by ~20 ppm) fit 11 better than the isome-
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ric N-acetyl compound. Why does the thiocacetic ester 11 - thiocesters are acyla-

ting reagents - not transfer the acetyl group to the neighboring NH function ?
Steric hindrance of the acyl shift is conceivable, but we prefer a thermodyna-
mic reason: The loss of resonance energy in a highly twisted acetamide deriva-

tive may change the energy balance in favor of 11.
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The cycloaddition of 5 to the less active noricrnene required 3 d at 50°C
and yielded 73% of the yellow 12, mp 135-136°C. MS: m/e = 375 (M+, 100%), 311
(M+— 25, 56%), 256 (M+~ 28 -~ CH,, 80%), 230 (10, 80%).

LiAlH4 converted 12 into the oily aminothiol 13; m/e = 345 (M+, 33%), 330
(M+— CH3, 18%), 230 (10, 100%). The crystalline S-acetyl derivative 14, mp 129
-130°C (64%), was obtained from 12 and LiAlH4, followed by acetyl chloride. N-H
at 3445 cm~1 (CC14), the lack of an S-H vibration, and §C 195.9 for CHB—QO—S
again excludes the acetanilide derivative. In the 1H NMR spectrum (CDCl3) of
14 after removal of NH by D2O, the doublets for 2-H and 3-H at ¢ 3.65 and 3.93,
J = 7 Hz, indicate the exc¢ cycloaddition of the 1,3-dipole 5 to norbornene.

The cycloadducts 7, 8, and 12 are pure compounds. In solution, double ccts
of NME signales at 32°C indicate unequal populations of two conformations. Sing-
le sets for the S-acetyl compounds 11 and 14 testify that after ring opening
conformational changes are fast on the NMR time scale. The 1H NMR spectrum of
7 in quinoline (80 MHz, 32°C) displays 2 s for 2‘—C(CH3)3(K\ 14.9 Hz), 2 s for
6'—CH3 (4.4 Hz), and only one s for 4'—C(CH3)3. Adduct 12 in guinoline showed
Av 18.1 Hz for 2'—C(CH3)3, 2.2 Hz for 4'—C(CH3)3, and 15.8 Hz for 6'—CH3. The
ratios of integrals, 62:38 for 7 and 82:18 for 12 are not precise due to super-
position by CH

The 13C NMR spectra (CDC1l

2 signals.

EX 20.15 MHz, 32°) disclose fair agreement in 11

intensity ratios of signal pairs: 58:42 for 7, 61:39 for 8, and 78:22 for 12.

The largest Av were found for the ring junctions: 90.3 Hz for C-3a and 47.6 Hz
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for C-9a of 7 as well as 92.2 Hz for C-3a and 17.7 Hz for C-7a of 12. The
6'—CH3 shifts differ by 43.3 Hz for 7 and 15.9 Hz for 12.

On heating 7 in quinoline, the 1H methyl singlets coalesced at 90+5°C (Av

2.0 Hz), and TC 125°C (Av 12.5 Hz) was estimated for the 2'—C(CH3)3 signals
(decomp. <110°C); AG* 20.7 and 21.1 kcal mol_1 refer to the major conformati-
on.12 For adduct 12, AG* 20.6 and 21.1 kcal mol—1, respectively, were calcula-
ted from TC 99+3°C (Av 13.0 Hz, 6'—CH3) and TC 108+4°C (13.2 Hz, 2'—C(CH3)3).
Apart from the stable stereocenters (3a,%9a in 7; 3a,7a in 12}, the cyclo-
adducts harbor four stereclabile configurational units: the hindered torsions

* 14 kcal mol~

was reported for S-S torsion of 1,2-dithiolane~4-carboxylic acid 13 and <12 kcal

about S-S, 8-N, N~Ar and the inversion at pyramidal nitrogen. AG !

mol_1 is estimated for the S$-N barrier in dithiazolidines from values of open-
chain sulfenamides.14 Although the activation energies of the stereomutations
of the ring members could be additive to some extent, the highly hindered N-Ar

rotation 15 is probably responsible for the observed barriers.
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The reaction of 5 with I-morpholinocyclopentene (3.5 h, ether, 20°C) fur-
nished 80% of a labile, light~yellow 1:71 adduct, mp 106-107°C. Structure 15 was
' (ccl,) and 5, (NH) 5.50 (D0 test).
A broad singlet at éH 4.50 is low for a vinylic proton, but fits the £~H of an

enamine. The 13C NMR spectrum (-21°C) showed s ¢ 131.6 and d 102.0 for C-1 and

ruled out by the N-H frequency at 3430 cm’

C-2 of the enamine formula 16. The multiplet of 5-H cannot be clearly located,
but the assignment of 4 5C 54.2 to C-5 is unambiguous. In contrast to the 1,2,3-
dithiazolidines, 16 displays a single set of NMR data.

Chemical properties accord with the copen chain structure 16. Hydrogenoly-
sis by Raney nickel (ethanol/ethyl acetate, 5 h 20°C) produced 82% of WN-cyclo-
pentylmorpholine (17) and 73% of 2,4-di-tert-butyl-6-methylaniline (18). In
1895, Michaelis 16

by 16. At room temperature, acetic acid converted 16 into 18, and 19 resulted

noticed the acid sensitivity of R N-S5-5-NR, which is shared

from 16 and acetic anhydride. Enamines add organic azides very fast.17 Indeed,
16 and 4-nitrophenyl azide (3 h 20°C, CC14) yielded 96% of 20, mp 137°C (dec.).

Formation of 16 is conceivable via 15 with subsequent ring opening. An al-~
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ternative is nucleophilic attack of the enamine on the terminal sulfur of 5

followed by 1,3-prototropy. We chose I-morpholinccy as a second examp-

le; the adduct (33%, mp 99-101°C) behaved similar to 16.
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